

Advanced Reactor Design

Week 5 Catalysts and Catalysis

Saba A. Gheni, Ph.D. Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

• This presentation covers catalysts and catalysis, including catalytic mechanisms, data analysis, and chemical vapor deposition (CVD).

كلبة الصندسة - COLLEGE OF ENGINEERING

Topics to be Addressed

- - Introduction to Catalysts and Catalysis
- - Catalytic Steps
- - Catalytic Mechanisms
- - Data Analysis
- - Chemical Vapor Deposition (CVD)

كلية الهندسة - COLLEGE OF ENGINEERING

Objectives

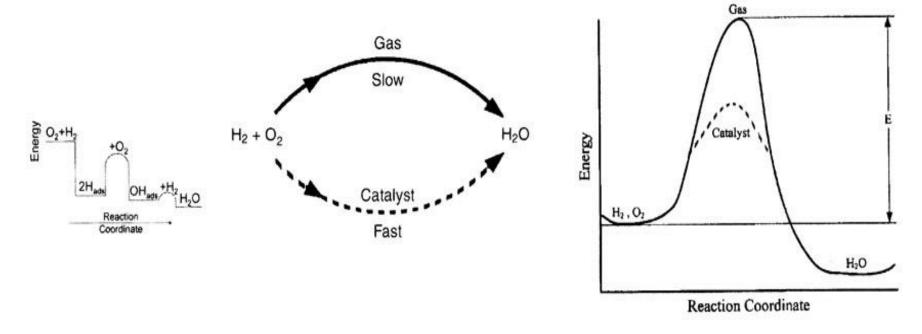
- Understand the role of catalysts in chemical reactions
- - Analyze catalytic mechanisms and reaction steps
- Apply data analysis methods for catalytic processes
- Explore applications of Chemical Vapor Deposition (CVD)

كلية المندسة - COLLEGE OF ENGINEERING

مریق (ای اندجاح مریق (ای اندجاح مریق (ای اندجاح

Catalysts and Catalysis

- A *Catalyst* is a substance that affects the rate of chemical reaction but emerges from the process unchanged.
- Catalysis is the occurrence, study, and use of catalysts and catalytic processes.


Approximately 1/3 of the GNP of materials produced in the U.S. involves a catalytic process.

كلية الصندسة - COLLEGE OF ENGINEERING

Catalysts and Catalysis

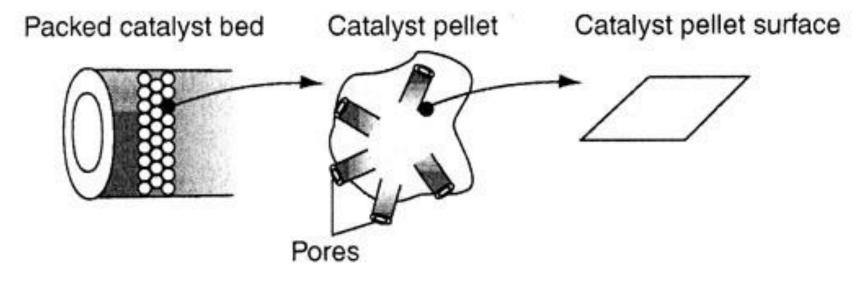
Catalysts affect both selectivity and yield

Different reaction paths

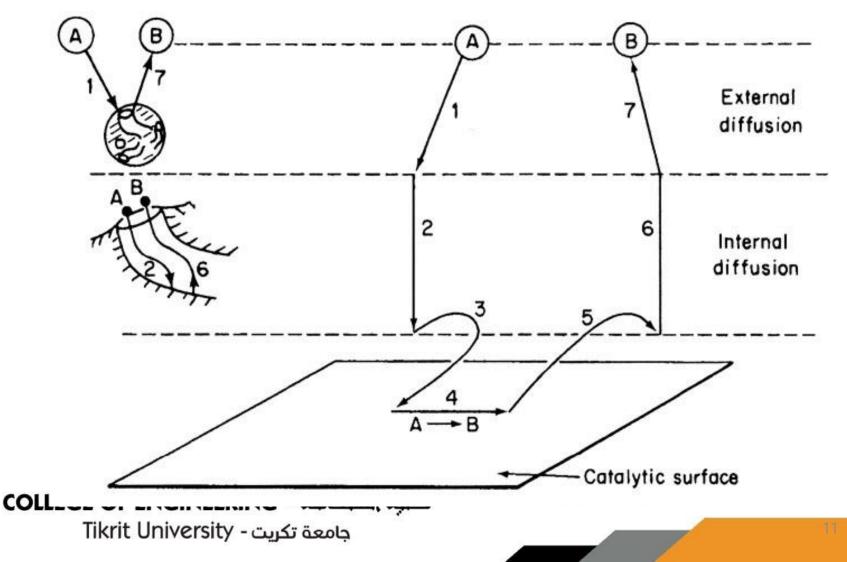
كلية الهندسة - COLLEGE OF ENGINEERING

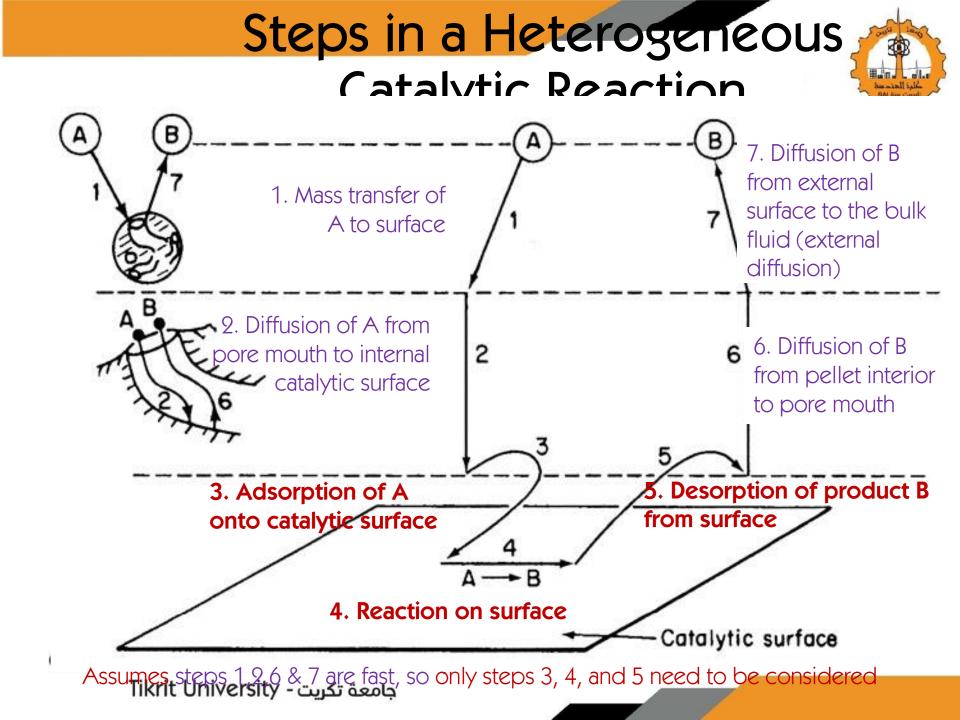
Catalysts and Catalysis

Different shapes and sizes of catalyst.


كلية الصندسة - COLLEGE OF ENGINEERING

Catalysts and Catalysis




Catalytic packed-bed reactor, schematic.

كلية الصندسة - COLLEGE OF ENGINEERING

Steps in a Catalytic Reaction

Step 2:

An instant later, X-rays from the LCLS (green) inspect the CO molecules, providing an ultrafast view of the transient state in desorption

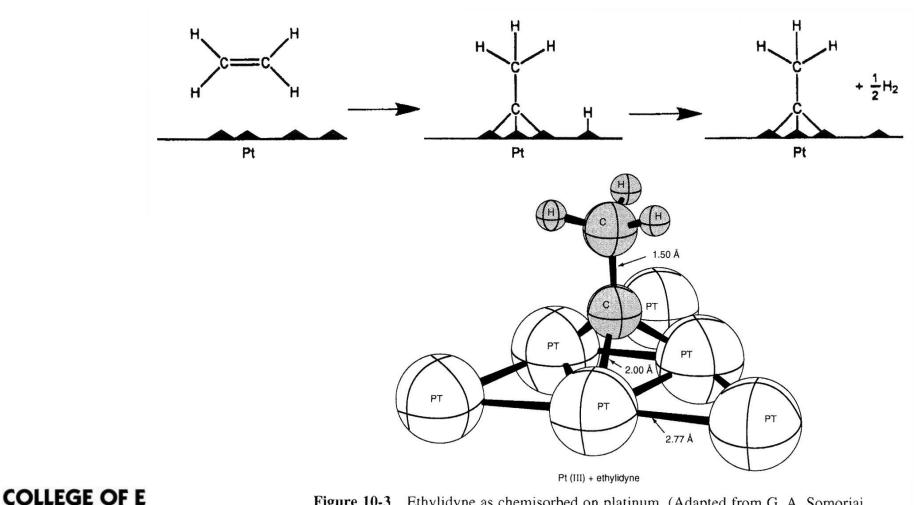
> Step 3: CO takes longer to break free of surface than expected, a surprise that improves our understanding of catalyzed processes

Step 1:

Carbon monoxide (CO) molecules bond with ruthenium catalyst surface until laser pulse (blue) initiates reaction

كلبة الهندسة - COLLEGE OF ENGINEERING

Active Sites

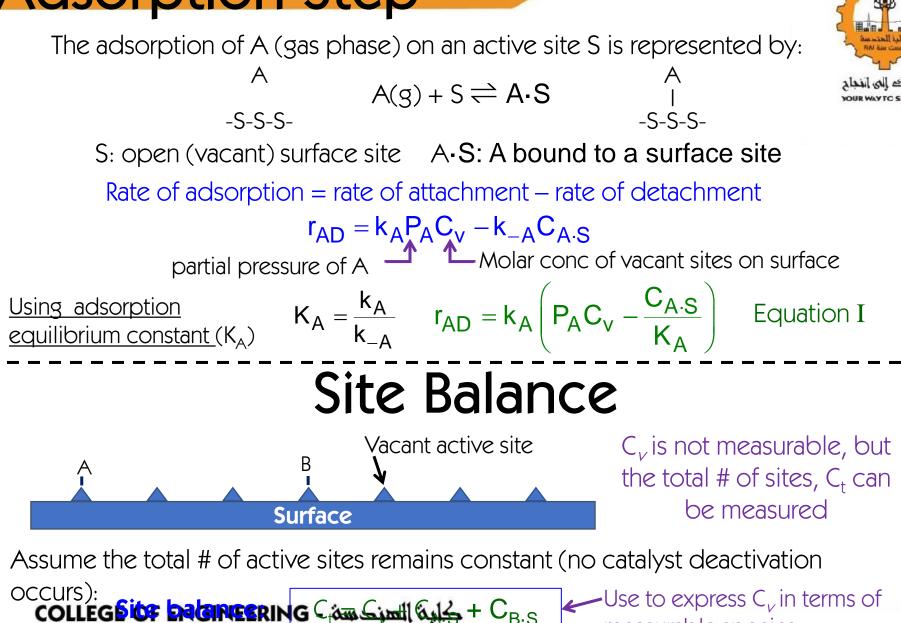

- Reactions are not catalyzed over the entire surface but only at certain active sites or centers that result from unsaturated atoms in the surface.
- An *active site* is a point on the surface that can form strong chemical bonds with an adsorbed atom or molecule.

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

طريقك إلى انداح YOUR WAY TO SUCCESS

Figure 10-3 Ethylidyne as chemisorbed on platinum. (Adapted from G. A. Somorjai, *Introduction to Surface Chemistry and Catalysis*, Wiley, New York, 1994.)

Tikrit L


The Adsorption Step $A + S \rightleftharpoons A \cdot S$ $A + S \swarrow A \cdot S$ Vacant and occupied sites

For the system shown, the total concentration of sites is

$$\mathbf{C}_{t} = \mathbf{C}_{v} + \mathbf{C}_{A.S} + \mathbf{C}_{B.S}$$

كلبة الهندسة - COLLEGE OF ENGINEERING

Adsorption Step

جامعة تكريت - Tikrit University

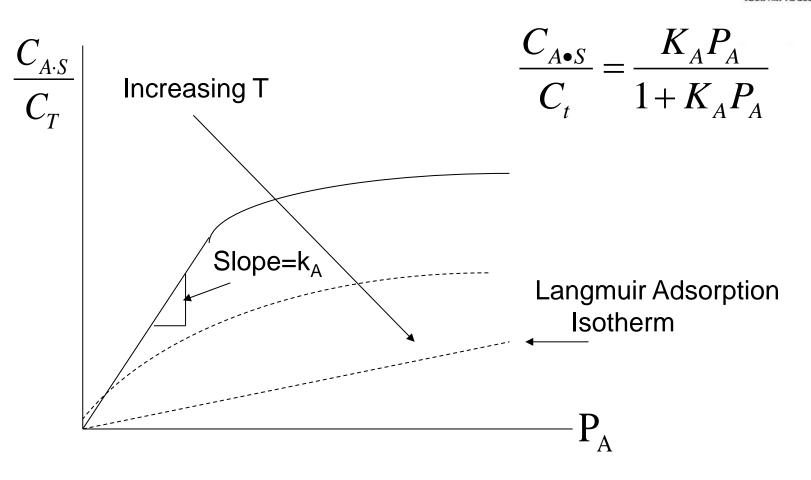
measurable species

The Adsorption Step

 $A + S \leftrightarrow A \bullet S$ $r_{AD} = k_A P_A C_v - k_{-A} C_{A \bullet S} = k_A \left[P_A C_V - C_{A \bullet S} / K_A \right]$ $K_{A} = k_{A} / k_{-A}$ [atm⁻¹] @ equilibrium : $r_{AD} = 0$ $C_{AS} = k_A P_A C_V$ $C_{AS} = k_A P_A C_V$ $r_{AD}/k_A \approx 0$ $C_{t} = C_{V} + C_{A \bullet S} = C_{V} + K_{A}P_{A}C_{V} = C_{V}(1 + K_{A}P_{A})$ College of engineering - $C_V = \frac{C_t}{E_V + K_A P_A}$

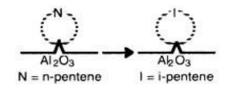
Langmuir Adsorption Isotherm

$$C_V = \frac{C_t}{1 + K_A P_A}$$


$$C_{A\cdot S} = K_A P_A C_V$$

$$C_{A\cdot S} = \frac{K_A P_A}{1 + K_A P_A} C_t$$

 $\frac{C_{A\cdot S}}{C_t} = \frac{K_A P_A}{1 + K_A P_A}$ College of engineering - کلبه الهنديسه Tikrit University - جامعة تكريت


Langmuir Adsorption Isotherm

كلية الهندسة - COLLEGE OF ENGINEERING

1. Single site. The surface reaction may be a single-site mechanism in which only the site on which the reactant is adsorbed is involved in the reaction. For example, an adsorbed molecule of A may isomerize (or perhaps decompose) directly on the site to which it is attached, such as

 $A \cdot S \longrightarrow B \cdot S$

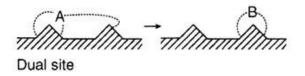
mmnn → mmn

Single site

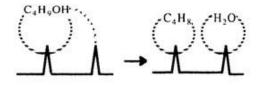
Because in each step the reaction mechanism is elementary, the surface reaction rate law is

Single Site

$$k_{\rm S} = \left(\frac{1}{\rm s}\right)$$


 $K_s = (dimensionless)$

$$r_{\rm S} = k_{\rm S} \left(C_{\rm A \cdot S} - \frac{C_{\rm B \cdot S}}{K_{\rm S}} \right)$$


where $K_{\rm S}$ is the surface reaction equilibrium constant $K_{\rm S} = k_{\rm S}/k_{-\rm S}$

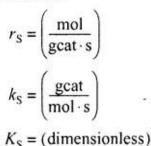
2. *Dual site*. The surface reaction may be a dual-site mechanism in which the adsorbed reactant interacts with another site (either unoccupied or occupied) to form the product.

For example, adsorbed A may react with an adjacent vacant site to yield a vacant site and a site on which the product is adsorbed, such as the dehydration of butanol.

For the generic reaction

COLLEGE

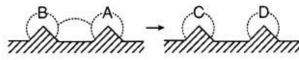
Ti


 $A \cdot S + S \iff B \cdot S + S$

the corresponding surface reaction rate law is

$$r_{\rm S} = k_{\rm S} \left(C_{\rm A \cdot S} C_v - \frac{C_{\rm B \cdot S} C_v}{K_{\rm S}} \right) \tag{10-}$$

Dual Site

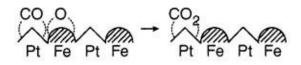

the corresponding surface reaction rate law is

$$r_{\rm S} = k_{\rm S} \left(C_{\rm A \cdot S} C_v - \frac{C_{\rm B \cdot S} C_v}{K_{\rm S}} \right)$$

Another example of a dual-site mechanism is the reaction between two adsorbed species, such as the reaction of CO with O

For the generic reaction

 $A \cdot S + B \cdot S \iff C \cdot S + D \cdot S$


Dual site

the corresponding surface reaction rate law is

$$r_{\rm S} = k_{\rm S} \left(C_{\rm A \cdot S} C_{\rm B \cdot S} - \frac{C_{\rm C \cdot S} C_{\rm D \cdot S}}{K_{\rm S}} \right)$$

A third dual-site mechanism is the reaction of two species adsorbed on different types of sites S and S', such as the reaction of CO with O.

For the generic reaction

 $A \cdot S + B \cdot S' \iff C \cdot S' + D \cdot S$

Dual site

the corresponding surface reaction rate law is

$$r_{\rm S} = k_{\rm S} \left(C_{\rm A+S} C_{\rm B+S'} - \frac{C_{\rm C+S'} C_{\rm D+S}}{K_{\rm S}} \right)$$

Langmuir-Hinshelwood kinetics Reactions involving either single- or dual-site mechanisms, which were described earlier are sometimes referred to as following *Lang-muir–Hinshelwood kinetics*.

كلبة الصندسة - COLLEGE OF ENGINEERING

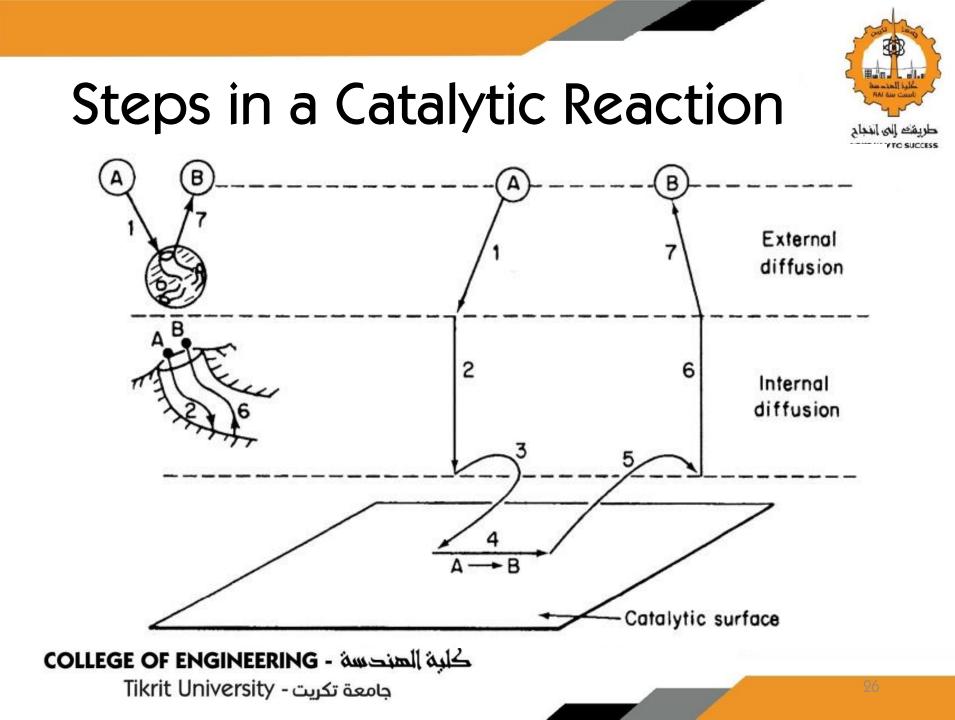
3. *Eley–Rideal*. A third mechanism is the reaction between an adsorbed molecule and a molecule in the gas phase, such as the reaction of propylene and benzene

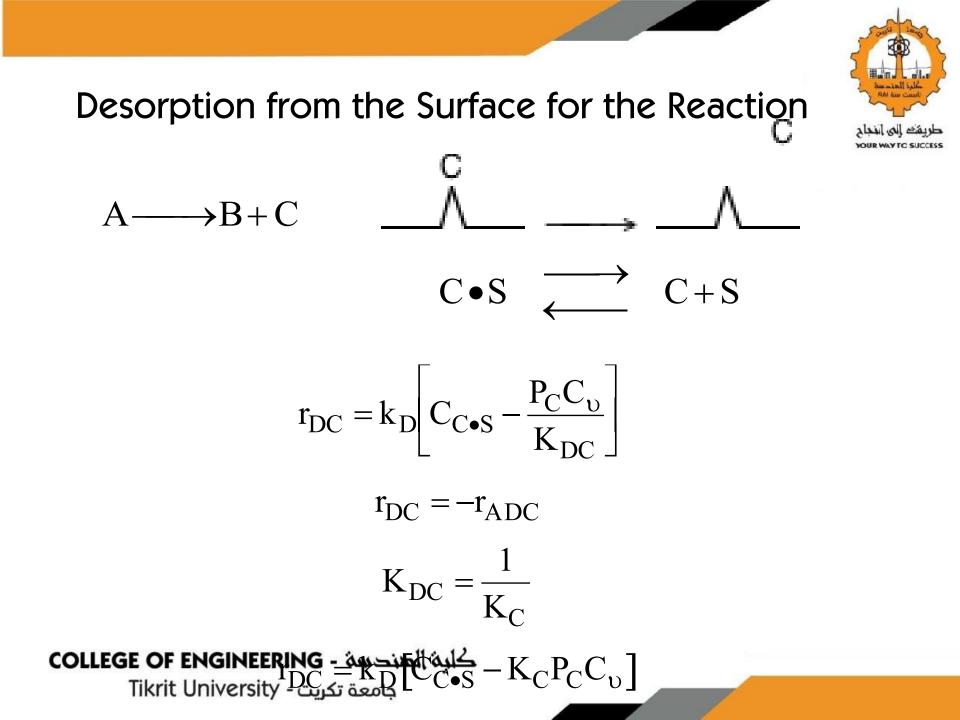
For the

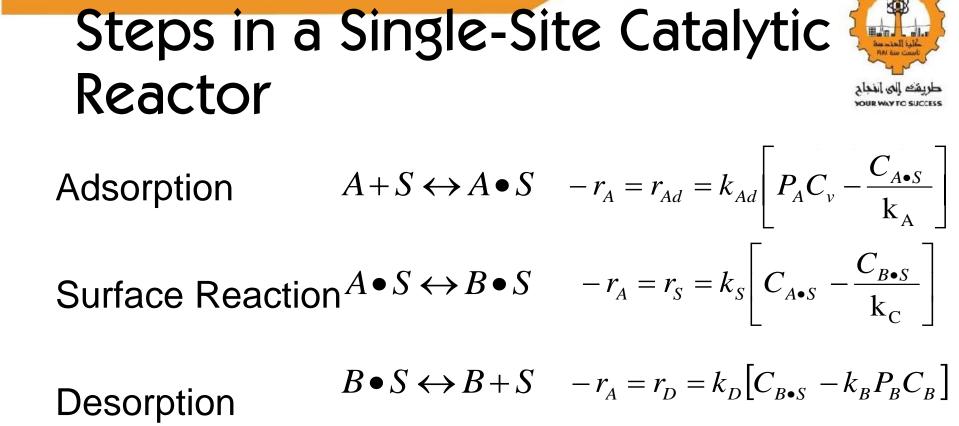
Eley-Rideal mechanism

For the generic reaction

 $A \cdot S + B(g) \iff C \cdot S$

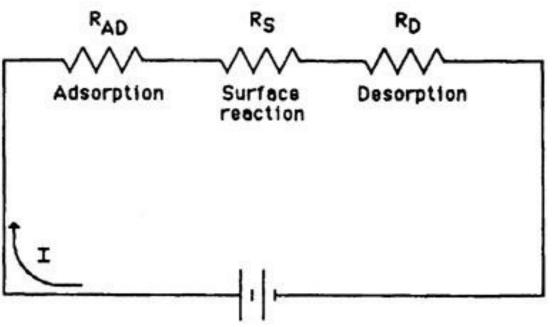

the corresponding surface reaction rate law is


$$r_{\rm S} = k_{\rm S} \left(C_{\rm A \cdot S} P_{\rm B} - \frac{C_{\rm C \cdot S}}{K_{\rm S}} \right)$$


This type of mechanism is referred to as an Eley-Rideal mechanism.

$$k_{\rm s} = \left(\frac{1}{\rm atm \cdot s}\right)$$
$$K_{\rm s} = \left(\frac{1}{\rm atm}\right)$$

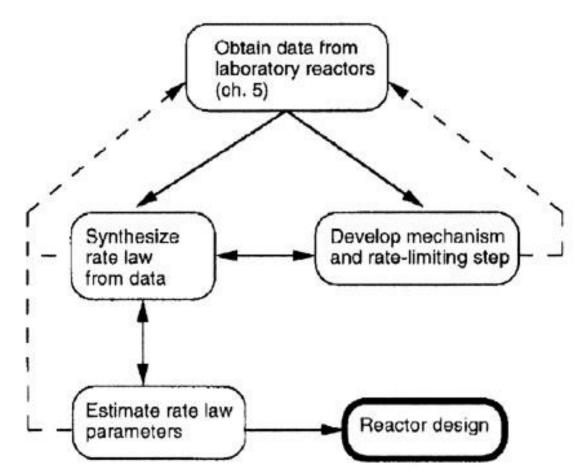
كلية الصندسة - COLLEGE OF ENGINEERING



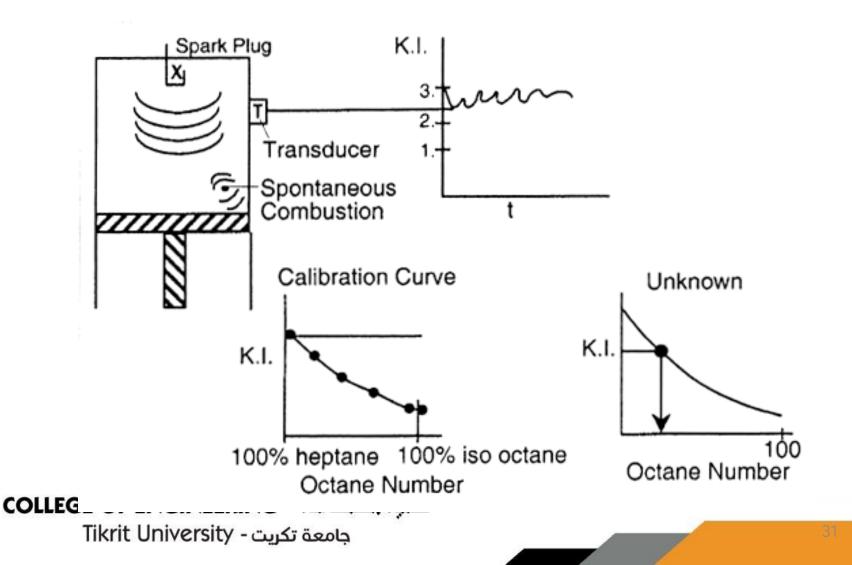
Which step is the <u>Rate Limiting Step (RLS)?</u>

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

The Rate Limiting Step: Which step has the largest resistance?

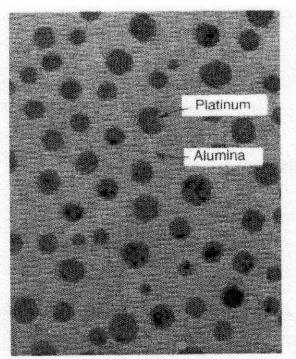

Electrical analog to heterogeneous reactions

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University - جامعة تكريت

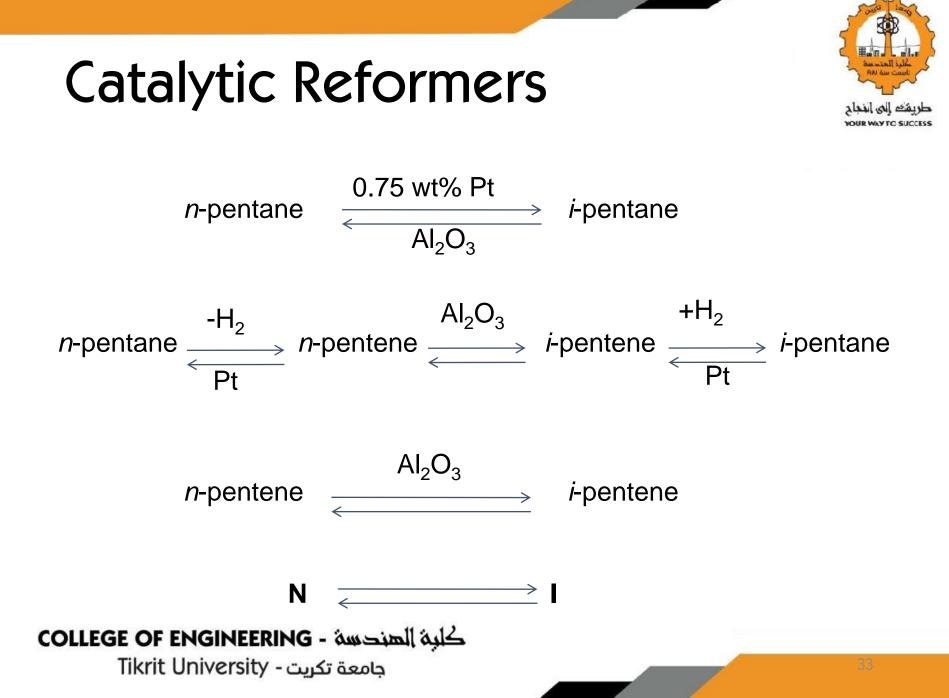

Collecting and Analyzing Data

Collecting information, for catalytic reactor design كلبة الهندينية - Tikrit University - جامعة تكريت - Tikrit University

Collecting and Analyzing Data



طريقك إلى انداح OUR WAY TO SUCCES


- Normal Pentane Octane Number = 62
- Iso-Pentane Octane Number = 95

Gasoline	
C ₅	10%
C ₆	10%
C ₇	20%
C ₈	25%
C	20%
C ₁₀	10%
C ₁₁₋₁₂	5%

ىة تكريت - Tikrit University

COLLEGE OF ENGINEERING - a Platinum on alumina. (Figure from R.I. Masel, Chemical Kinetics and Catalysis, Wiley, New York, 2001, p 700)

Isomerization of *n*-pentene (N) to *i*-pentene (I) over alumina

$$N \xrightarrow{Al_2O_3} |$$

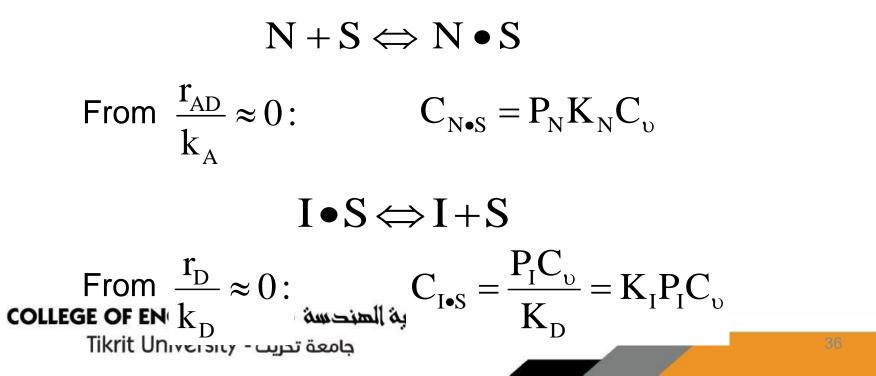
1. Select a mechanism (Mechanism Single Site)

Adsorption on Surface: $N + S \Leftrightarrow N \bullet S$

Treat each reaction step as an elementary reaction when writing rate laws. **COLLEGE OF ENGINEERING - كلبة الهندسة** Tikrit University - جامعة تكريت - Tikrit University

2. Assume a rate-limiting step. Choose the surface reaction first, since more than 75% of all heterogenous reactions that are not diffusion-limited are surface-reaction-limited. The rate law for the surface reaction step is:

$$N \bullet S + S \Leftrightarrow I \bullet S + S$$


$$-r_{N}' = r_{I} = r_{S} = k_{S} \left(C_{N \bullet S} - \frac{C_{I \bullet S}}{K_{S}} \right)$$

كلية الصندسة - COLLEGE OF ENGINEERING

3. Find the expression for the concentrations of the adsorbed species

 $C_{N.S}$ and $C_{I.S}$. Use the other steps that are not limiting to solve for $C_{N.S}$ and $C_{I.S}$. For this reaction:

Catalytic Reformers

4. Write a Site Balance.

$$C_t = C_\upsilon + C_{N \bullet S} + C_{I \bullet S}$$

5. Derive the rate law. Combine steps 2, 3 and 4 to arrive at the rate law :

$$-r_{N}' = r_{S} = \frac{\overbrace{k_{s}C_{t}K_{N}(P_{N} - P_{I}/K_{P})}^{k}}{(1 + K_{N}P_{N} + K_{I}P_{I})}$$

$$-r_{N}' = r_{S} = \frac{k(P_{N} - P_{I}/K_{P})}{(1 + K_{N}P_{N} + K_{I}P_{I})}$$
COLLEGE OF ENGINEER
Tikrit University

Catalytic Conversion of Exhaust Gas

	1994	2004	2008
HC	0.41	0.125	0.10
CO	3.4	3.4	3.4
NO	0.4	0.4	0.14

$$\text{CO} + \text{NO} \rightarrow \text{CO}_2 + \frac{1}{2}\text{N}_2$$

كلية الهندسة - COLLEGE OF ENGINEERING

Catalytic Conversion of Exhaust Gas

$$NO + S \xrightarrow{\leftarrow} NO \bullet S \qquad r_{ANO} = k_{NO} \left[P_{NO}C_{V} - \frac{C_{NO} \cdot S}{K_{NO}} \right] \quad C_{NO} \cdot S = K_{NO}P_{NO}C_{V}$$

$$CO \cdot S \stackrel{\longrightarrow}{\leftarrow} CO \cdot S \qquad r_{ACO} = k_{CO} \left[P_{CO}C_{V} - \frac{C_{CO \cdot S}}{K_{CO}} \right] \quad C_{CO \cdot S} = K_{CO}P_{CO}C_{V}$$

 $CO \bullet S + NO \bullet S \rightarrow CO_2 + N \bullet S + S \quad r_s = k_s [C_{CO \bullet S} C_{NO \bullet S}]$

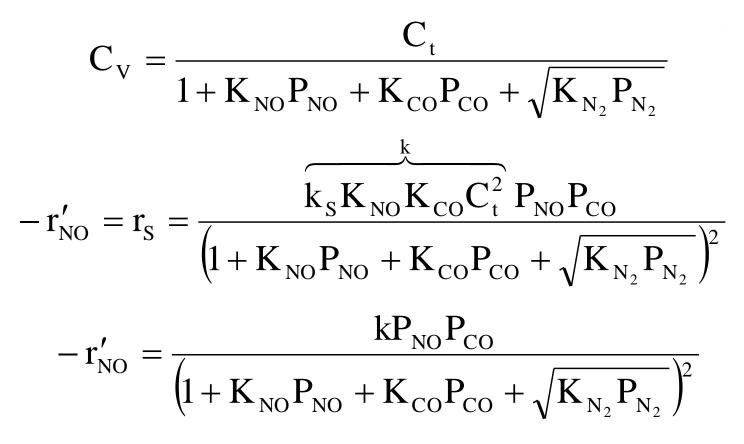
 $\mathbf{N} \cdot \mathbf{S} + \mathbf{N} \cdot \mathbf{S} \xrightarrow{\longrightarrow} \mathbf{N}_{2}(g) + 2\mathbf{S} \qquad \mathbf{r}_{\mathrm{D}} = \mathbf{k}_{\mathrm{D}} \left[\mathbf{C}_{\mathrm{N} \cdot \mathrm{S}}^{2} - \mathbf{K}_{\mathrm{N}_{2}} \mathbf{P}_{\mathrm{N}_{2}} \mathbf{C}_{\mathrm{V}}^{2} \right] \qquad \mathbf{C}_{\mathrm{N} \cdot \mathrm{S}} = \mathbf{C}_{\mathrm{V}} \sqrt{\mathbf{K}_{\mathrm{N}} \mathbf{P}_{\mathrm{N}_{2}}}$

كلية الهندسة - COLLEGE OF ENGINEERING

Catalytic Conversion of Exhaust Gas

 $\mathbf{r}_{\mathrm{S}} = \mathbf{k}_{\mathrm{S}} \left[\mathbf{C}_{\mathrm{NO} \bullet \mathrm{S}} \mathbf{C}_{\mathrm{CO} \bullet \mathrm{S}} \right]$

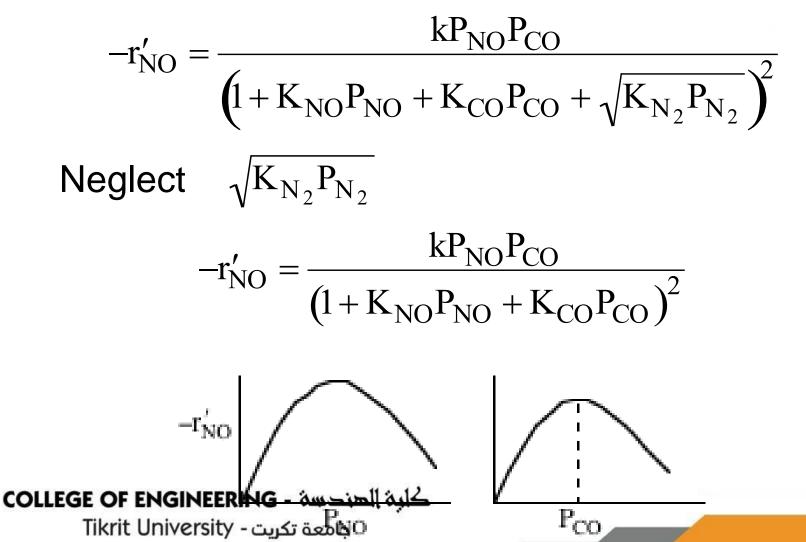
$$r_{\rm S} = k_{\rm S} K_{\rm NO} K_{\rm CO} P_{\rm NO} P_{\rm CO} C_{\rm V}^2$$


 $C_{T} = C_{V} + C_{NO \bullet S} + C_{CO \bullet S} + C_{N \bullet S}$

 $= C_{V} + C_{V}K_{NO}P_{NO} + C_{V}K_{CO}P_{CO} + C_{V}\sqrt{K_{N_{2}}P_{N_{2}}}$

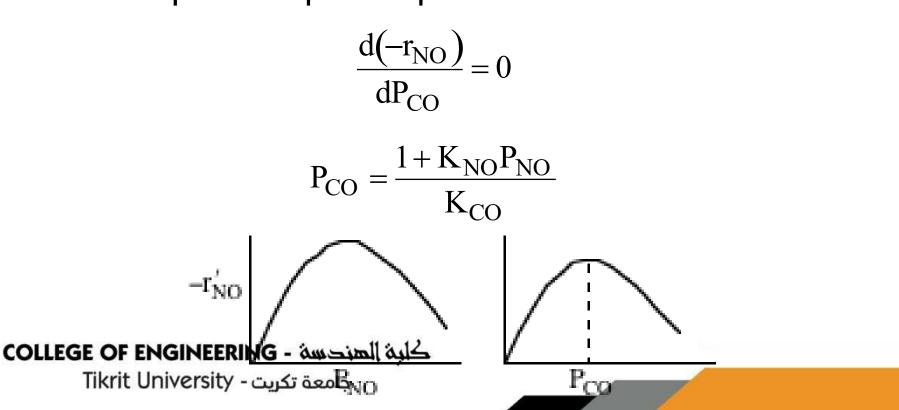
كلية الصندسة - COLLEGE OF ENGINEERING

Catalytic Conversion of Exhaust Gas

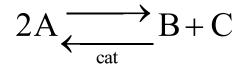


كلية الهندسة - COLLEGE OF ENGINEERING

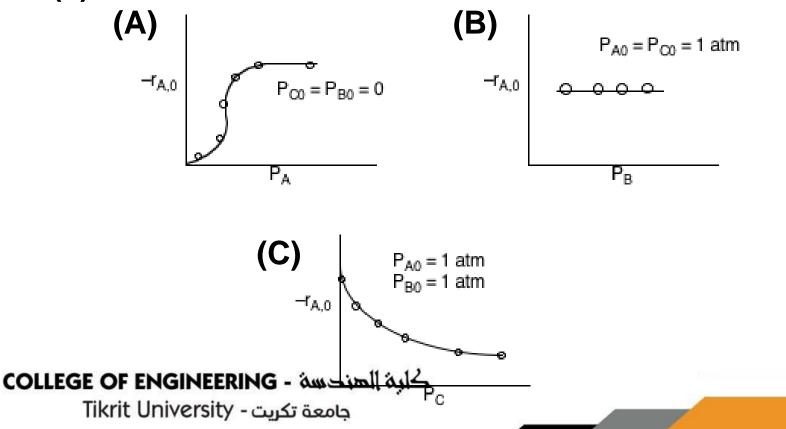
Catalytic Conversion of Exhaust Gas

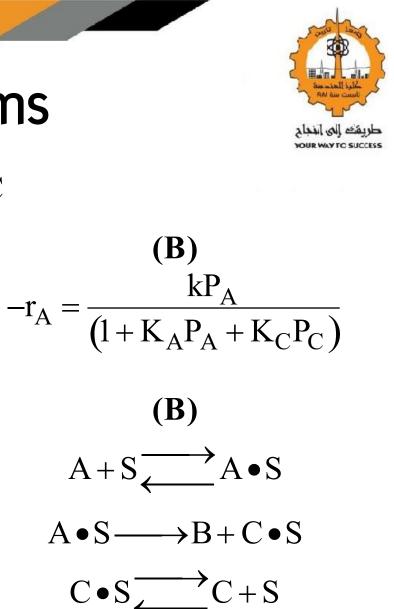


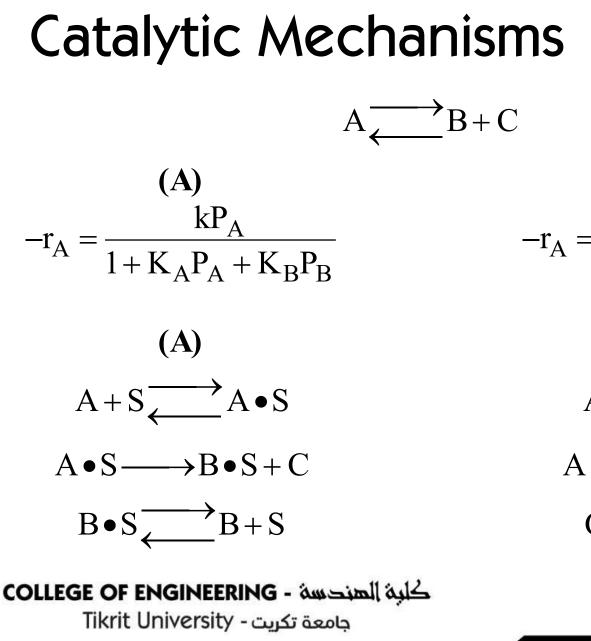
Catalytic Conversion of Exhaust Gas $-r'_{NO} = \frac{kP_{NO}P_{CO}}{(1 + K_{NO}P_{NO} + K_{CO}P_{CO})^2}$



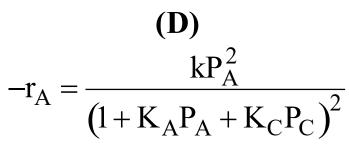
Find optimum partial pressure of CO

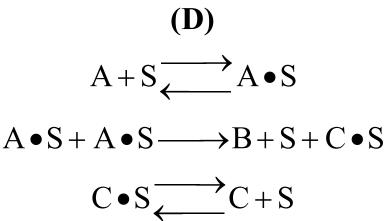




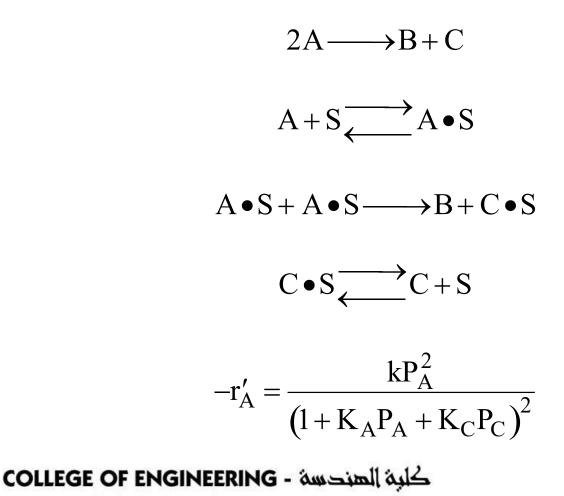

Catalytic Mechanisms

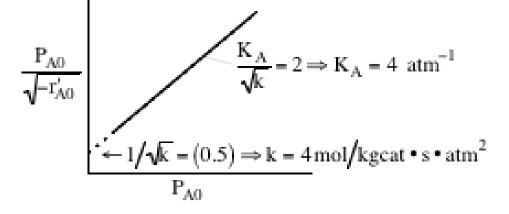
(a) The initial rate of reaction is shown below





Catalytic Mechanisms $2A \longrightarrow B + C$ **(C)** $-r_{A} = \frac{kP_{A}^{2}}{\left(1 + K_{A}P_{A} + K_{C}P_{C}\right)^{2}}$ **(C)** $A + S \xrightarrow{} A \bullet S$ $A \bullet S + A(g) \longrightarrow B + C \bullet S$ $C \bullet S \longrightarrow C + S$


COLLEGE OF ENGINEERING - كلبة الهندسة جامعة تكريت - Tikrit University



Catalytic Mechanisms

Catalytic Mechanisms

$$-r_{A0}' = \frac{4P_A^2}{1 + 4P_{A0} + K_C P_{C0}}$$

For $P_{C0} = 2$ atm and $P_{A0} = 1$ atm, then $-r'_{A0} = 0.0138 \frac{\text{mol}}{\text{kgcat} \cdot \text{s}}$ $-r'_{A0} = \frac{4}{(1+4+2K_C)^2} = 0.0138$

One equation and one unknown

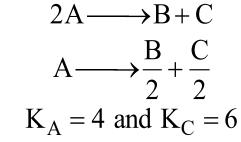
 $K_C = 6 \text{ atm}^{-1}$

COLLEGE OF ENGINEERING P كلبة الهندسة Tikrit Univergity حلية تكرين)2

Catalytic Mechanisms $2A \xrightarrow{\longrightarrow} B + C$ $A + S \xrightarrow{\longrightarrow} A \bullet S$ $-r'_A = r_{A0} = k_A \left[P_A C_V - \frac{C_{A \bullet S}}{K_A} \right] \Rightarrow C_{A \bullet S} = K_A P_A C_V$

$$A \bullet S + A \bullet S \longrightarrow B + S + C \bullet S \quad -r'_A = r_S = k_S C_{A \bullet S}^2$$

$$C \bullet S \xrightarrow{\longrightarrow} C + S \qquad -r_A = r_{DC} = k_{DC} \left[C_{C \bullet S} - P_C C_V K_C \right] \Rightarrow C_{C \bullet S} = K_C P_C C_V$$


Where $K_A = 4 \text{ atm}^{-1}$ and $K_C = 6 \text{ atm}^{-1}$

- 1) At what is the ratio of sites with A adsorbed to those sites with C adsorbed when the conversion is 50%?
- 2) What is the conversion when the sites with A adsorbed are equal to those with C adsorbed?

كلية الصندسة - COLLEGE OF ENGINEERING

Catalytic Mechanisms

Ratio of site concentrations

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \frac{K_A P_A C_V}{K_C P_C C_V} = \frac{K_A P_A}{K_C P_C}$$

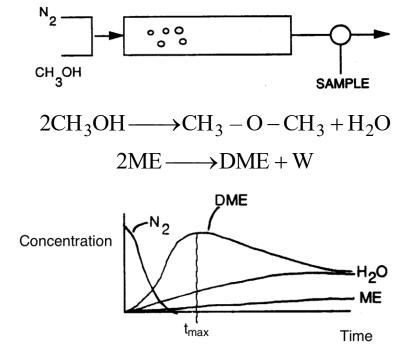
$$P_A = P_{A0} (1-X)/(1+\varepsilon X)$$

$$P_C = P_{A0} \frac{X}{2(1+\varepsilon X)}$$

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = \frac{K_A P_{A0} \left(\frac{1-X}{1+\varepsilon X}\right) \frac{P}{P_0}}{K_C P_0} = 2 \frac{K_A (1-X)}{K_C X}$$
COLLEGE OF ENGINEERING C is the set of the se

Catalytic Mechanisms

1) At X = 0.5


$$\frac{C_{A\bullet S}}{C_{C\bullet S}} = \sim \frac{(2)(4)(1-0.5)}{6(0.5)} = 1.33$$

2) At an equal concentrations of A and C sites, the conversion will be

$$\frac{C_{A \bullet S}}{C_{C \bullet S}} = 1 = \frac{2K_A(1-X)}{K_C X}, \text{ then } X = \frac{2K_A}{K_C + 2K_A} = \frac{(2)(4)}{6 + (2)(4)} = \frac{8}{14}$$
$$X = 0.57$$
College of Engineering - Like line with an equation of the set of

Dimethyl Either

Initially water does not exit the reactor the same as DME because Which of the following best describes the data

- A There is more DME than water.
- **B** Steady state has been reached.

C Water reacts with ME. COLLEGE OF ENGINEERING Adsorbed on the surface. Tikrit University - جامعة تكريت

Mechanisms

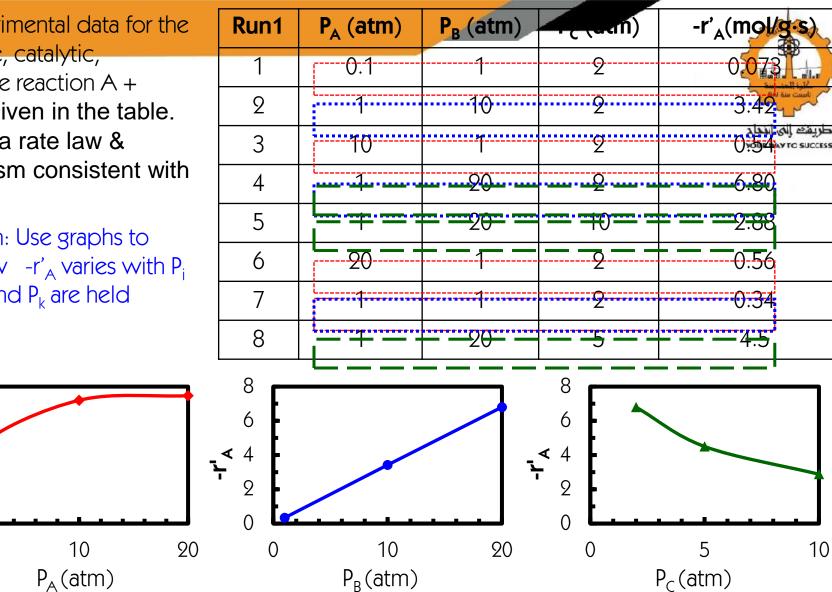
- More than 70% of heterogeneous reaction mechanisms are surface reaction
- If a species appears in the numerator of the rate law, it is probably a reactant
- If a species appears in the denominator of the rate law, it is probably adsorbed in the surface

كلبة الهندسة - COLLEGE OF ENGINEERING

The overall reaction for the hydrogenation (H) of ethylene (Landa a cobaltmolybdenum catalyst to form ethane (A) is $H_{9}(g) + C_{2}H_{4}(g) \rightarrow C_{2}H_{6}(g)$ and the observed rate law is: $-r'_{E} = \frac{kP_{E}P_{H}}{1+K_{E}P_{E}}$ Suggest a mechanism and rate-limiting step that is consistent with the rate law P_F appears in the denominator of the observed rate eq, so P_F is adsorbed on the surface. Neither P_H or P_A are in the denominator, so neither H or A are adsorbed on the surface. Adsorption: $E + S \square \square \square E \cdot S$ $r_{AD} = k_A \left(P_E C_V - \frac{C_{E \cdot S}}{K_{AD}} \right)$ We'll assume that the surface reaction is rate limiting Surface rxn: $E \cdot S + H \rightarrow A + S$ $r_S = k_S C_{E \cdot S} P_H$ No desorption step - P_A isn't in the denominator. Eliminate conc of occupied & vacant sites on surface: $\frac{r_{AD}}{k_A} = 0 = P_E C_V - \frac{C_{E \cdot S}}{K_{AD}} \rightarrow K_{AD} P_E C_V = C_{E \cdot S}$ site balance: $C_t = C_V + C_{E \cdot S} \rightarrow C_t = C_V + K_{AD}P_EC_V \rightarrow \frac{C_t}{1 + K_{AD}P_E} = C_V$ $r_{S} = k_{S}C_{E} \circ P_{H} \rightarrow r_{S} = \frac{k_{S}K_{AD}P_{E}P_{H}C_{t}}{College of engineering(-AD)} \quad k = k_{S}K_{AD}C_{t} \& K_{AD} = K_{E} \rightarrow r_{S} = \frac{kP_{E}P_{H}}{1 + K_{E}P_{E}}$ جامعة تكريت - Tikrit University

The experimental data for the gas-phase, catalytic, irreversible reaction A + $B \rightarrow C$ is given in the table. Suggest a rate law & mechanism consistent with the data.

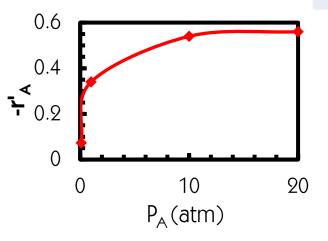
Approach: Use graphs to show how $-r'_{A}$ varies with P_{i} when P_i and P_k are held constant


0.6

0.4

0

()


۲ 0.2

We need to use these graphs to determine whether A, B, & C are in the COLLEGE OF ENGINEERING mention binator, or both. جامعة تكريت - Tikrit University

The experimental data for the gas-phase, catalytic, irreversible reaction A + $B \rightarrow C$ is given in the table. Suggest a rate law & mechanism consistent with the data.

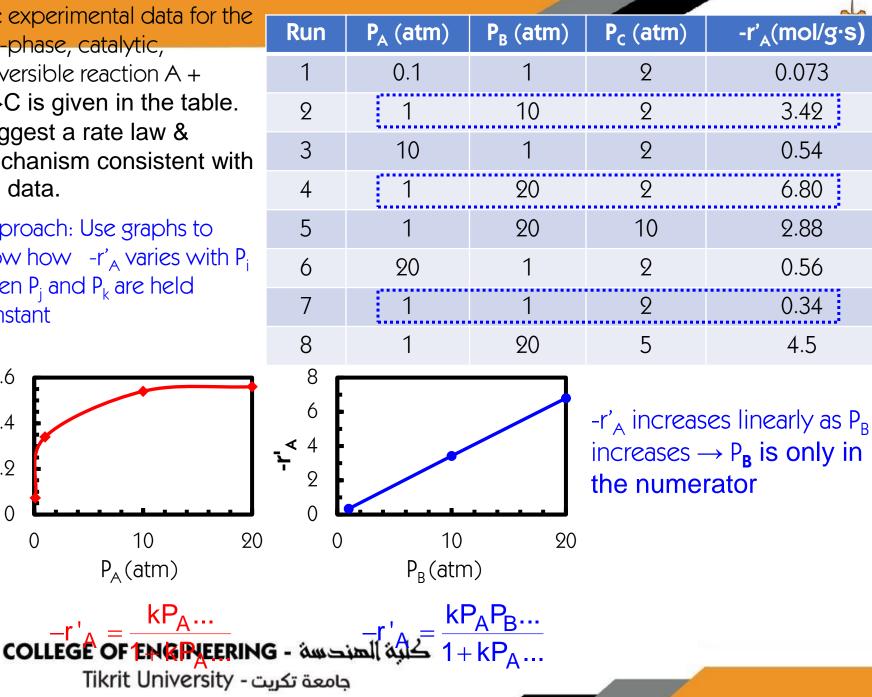
Approach: Use graphs to show how $-r'_A$ varies with P_i when P_j and P_k are held constant

Run	P _A (atm)	P _B (atm)	P _c (atm)	-r' _A (mol/g·s)
1	0.1	1	2	0.073
2	1	10	2	3.42
3	10	1	2	0.54
4	1	20	2	6.80
5	1	20	10	2.88
6	20	1	2	0.56
7	1	1	2	0.34
8	1	20	5	4.5

-r'_A increases rapidly at low P_A (means its in the numerator), but it levels off at high P_A (means its in the denominator) \rightarrow P_A in numerator & denominator of - r'_A

_r'م = <u>kP</u>A... كلبة **الحندسة - COLLEGE OF ENGPLEERING** جامعة تكريت - Tikrit University The experimental data for the gas-phase, catalytic, irreversible reaction A + $B \rightarrow C$ is given in the table. Suggest a rate law & mechanism consistent with the data.

Approach: Use graphs to show how $-r'_{A}$ varies with P_{i} when P_i and P_k are held constant


0.6

0.4

0

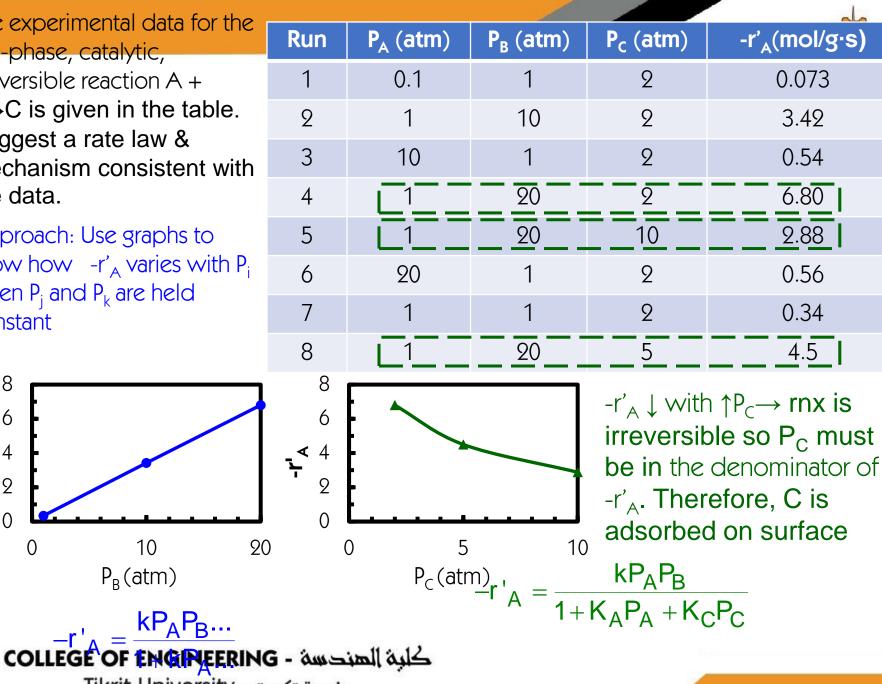
0

ب 0.2 ب

The experimental data for the gas-phase, catalytic, irreversible reaction A + $B \rightarrow C$ is given in the table. Suggest a rate law & mechanism consistent with the data.

Approach: Use graphs to show how $-r'_{A}$ varies with P_{i} when P_i and P_k are held constant

8


6

2

0

()

◄ 4

The rate law suggested for the experimental data given for the 303-phase, catalytic, irreversible reaction $A + B \rightarrow C$ is:

$$-r'_{A} = \frac{kP_{A}P_{B}}{1+K_{A}P_{A}+K_{C}P_{C}}$$

Suggest a mechanism for this rate law.

 P_A and P_c are in the denominator. A (reactant) and C (product) must be adsorbed on the surface, but B is not adsorbed on the surface: Adsorption of reactant A:

$$A + S \Box \quad A \cdot S \quad r_{AD} = k_A P_A C_V - k_{-A} C_{A \cdot S} \quad \rightarrow r_{AD} = k_A \left(P_A C_V - \frac{C_{A \cdot S}}{K_A} \right)$$

Desorption of product C:

$$C \cdot S \square \quad C + S \quad r_{DC} = k_D C_{C \cdot S} - k_{-D} P_C C_V \quad \rightarrow r_{DC} = k_D \left(C_{C \cdot S} - \frac{\Gamma_C C_V}{K_D} \right)$$

كلية المندسة - COLLEGE OF ENGINEERING

The rate law suggested for the experimental data given for the sus-phase, catalytic, irreversible reaction $A + B \rightarrow C$ is:

$$-r'_{A} = \frac{kP_{A}P_{B}}{1+K_{A}P_{A}+K_{C}P_{C}}$$

Suggest a mechanism for this rate law.

 P_A and P_C are in the denominator. A (reactant) and C (product) must be adsorbed on the surface, but B is not:

Adsorption of reactant A:

$$A + S \Box \quad A \cdot S \quad r_{AD} = k_A P_A C_V - k_{-A} C_{A \cdot S} \quad \rightarrow r_{AD} = k_A \left(P_A C_V - \frac{C_{A \cdot S}}{K_A} \right)$$

Desorption of product C:

$$C \cdot S \square \quad C + S \quad r_{DC} = k_D C_{C \cdot S} - k_{-D} P_C C_V \quad \rightarrow r_{DC} = k_D \left(C_{C \cdot S} - \frac{P_C C_V}{K_D} \right)$$

Surface reaction step: B is not adsorbed on the surface, so B must be in the gas phase when it reacts with A adsorbed on the surface. The overall reaction is irreversible, so this step is likely irreversible.

COLLEGE OF ENGINEERING Band Confection

$$r_{S} = k_{S}C_{A \cdot S}P_{B}$$

The rate law suggested for the experimental data given on sligas-phase, catalytic, irreversible reaction $A + B \rightarrow C$ is:

$$-r'_{A} = \frac{kP_{A}P_{B}}{1+K_{A}P_{A}+K_{C}P_{C}}$$

 $A + S \square A \cdot S$

for the

 $r_{AD} = k_A \left(P_A C_V - \frac{C_{A \cdot S}}{K_A} \right)$

 $r_{S} = k_{S}C_{A,S}P_{B}$

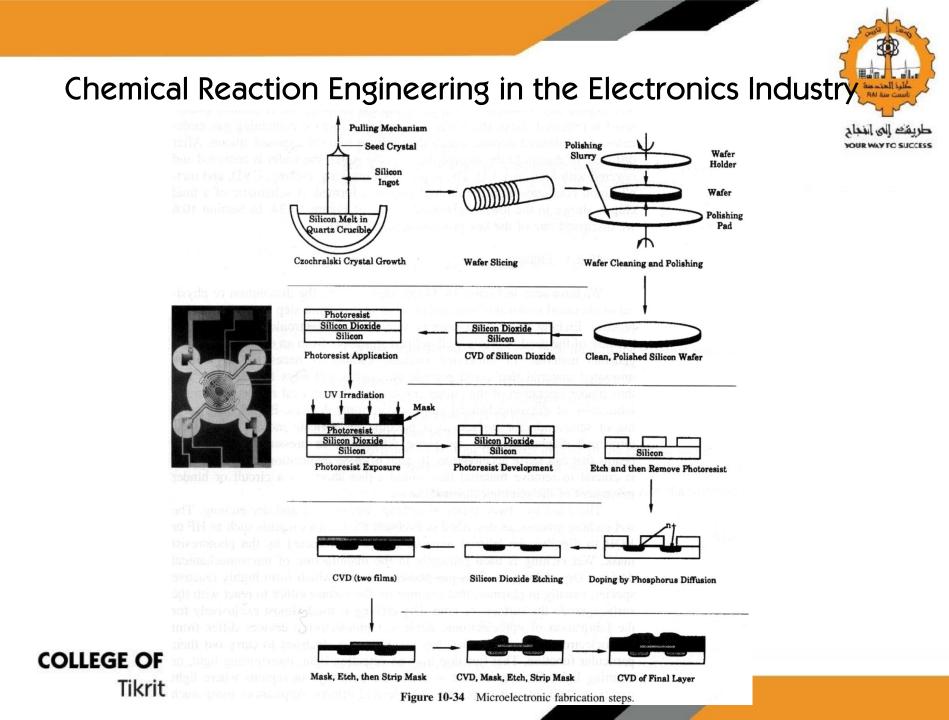
طريقك إلى انجاح OUR WAY TO SUCCESS

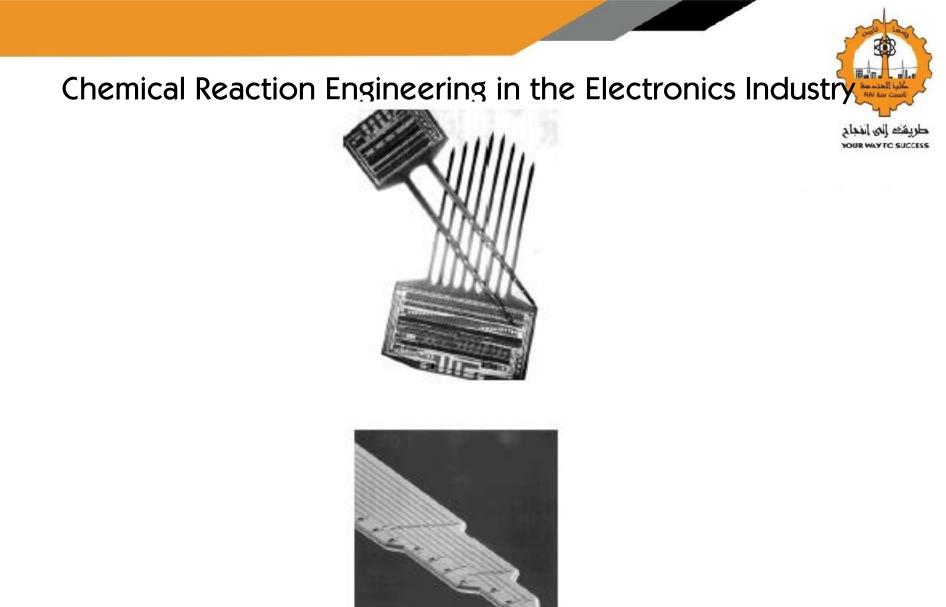
Suggest a mechanism for this rate law.

Adsorption of reactant A:

Surface reaction:

 $A \cdot S + B \rightarrow C \cdot S$


Desorption of product C: $\mathbf{C} \cdot \mathbf{S} \square \mathbf{C} + \mathbf{S}$


C + S $r_{DC} = k_D \left(C_{C \cdot S} - \frac{P_C C_V}{K_D} \right)$

Postulate that the surface reaction is the rate limiting step since that is true the majority of the time. Check if that is consistent with the observed kinetics

 $-r'_{A} = r_{S} = k_{S}C_{A,S}P_{B}$ $\frac{\text{Eliminate } C_{A,S} \& C_{v}}{\text{from rate } eq}$ $C_{t} = C_{v} + C_{A,S} + C_{C,S}$ $\frac{r_{AD}}{k_{A}} = 0 = P_{A}C_{v} - \frac{C_{A,S}}{K_{A}}$ $\rightarrow P_{A}C_{v} = \frac{C_{A,S}}{K_{A}}$ $\rightarrow K_{A}P_{A}C_{v} = C_{A,S}$ $\frac{r_{DC}}{CQLLEGE OF ENGINEERING} - \frac{P_{C}C_{v}}{K_{D}}$ $= \frac{P_{C}C_{v}}{K_{D}}$ $\frac{P_{C}C_{v}}{K_{D}} = 0$ $= C_{C}C_{v}$ $\frac{P_{C}C_{v}}{K_{D}} = 0$ $= C_{$

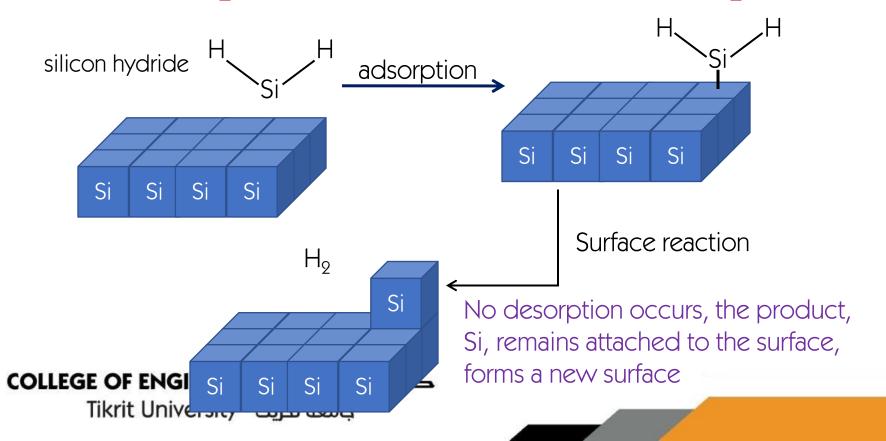
The rate law suggested for the experimental data given on since 13 for the gas-phase catalytic, irreversible reaction A + B \rightarrow C is: -r'_A = $\frac{kP_AP_B}{1+K_AP_A+K_CP_C}$ طريقت الى انداح Suggest a mechanism for this rate law. Adsorption of reactant A: Surface reaction: Desorption of product C: $A + S \square A \cdot S$ $C \cdot S \square C + S$ $A \cdot S + B \rightarrow C \cdot S$ $\mathbf{r}_{DC} = \mathbf{k}_{D} \left(\mathbf{C}_{C \cdot S} - \frac{\mathbf{P}_{C} \mathbf{C}_{V}}{\mathbf{K}_{D}} \right)$ $\mathbf{r}_{AD} = \mathbf{k}_{A} \left(\mathbf{P}_{A} \mathbf{C}_{V} - \frac{\mathbf{C}_{A \cdot S}}{\mathbf{K}_{A}} \right)$ $r_{S} = k_{S}C_{A \cdot S}P_{B}$ $C_{A\cdot S} = K_A P_A C_V$ Postulated surface reaction $A = r_S = k_S C_{A \cdot S} P_B = k_S K_A P_A C_V P_B$ is rate limiting $C_{C \cdot S} = P_C C_V / K_D$ $C_{t} = C_{v} + C_{A \cdot S} + C_{C \cdot S} \rightarrow C_{t} = C_{v} + K_{A} P_{A} C_{V} + \frac{P_{C} C_{V}}{K_{D}} \rightarrow \frac{C_{t}}{1 + K_{A} P_{A} + P_{C}/K_{D}} = C_{v}$ $-r'_{A} = r_{S} = k_{S}C_{A \cdot S}P_{B} = k_{S}K_{A}P_{A}C_{V}P_{B} \rightarrow r_{S} = \frac{k_{S}K_{A}P_{A}C_{t}P_{B}}{1+K_{A}P_{A}+P_{C}/K_{D}}$ $\rightarrow r_{\rm S} = \frac{k P_{\rm A} P_{\rm B}}{1 + K_{\rm A} P_{\rm A} + K_{\rm C} P_{\rm C}}$ $K_{C} = \frac{1}{k} = k_{S} K_{A} C_{f}$ College of Engineering - كلبة الهندسة جامعة تكريت - Tikrit University

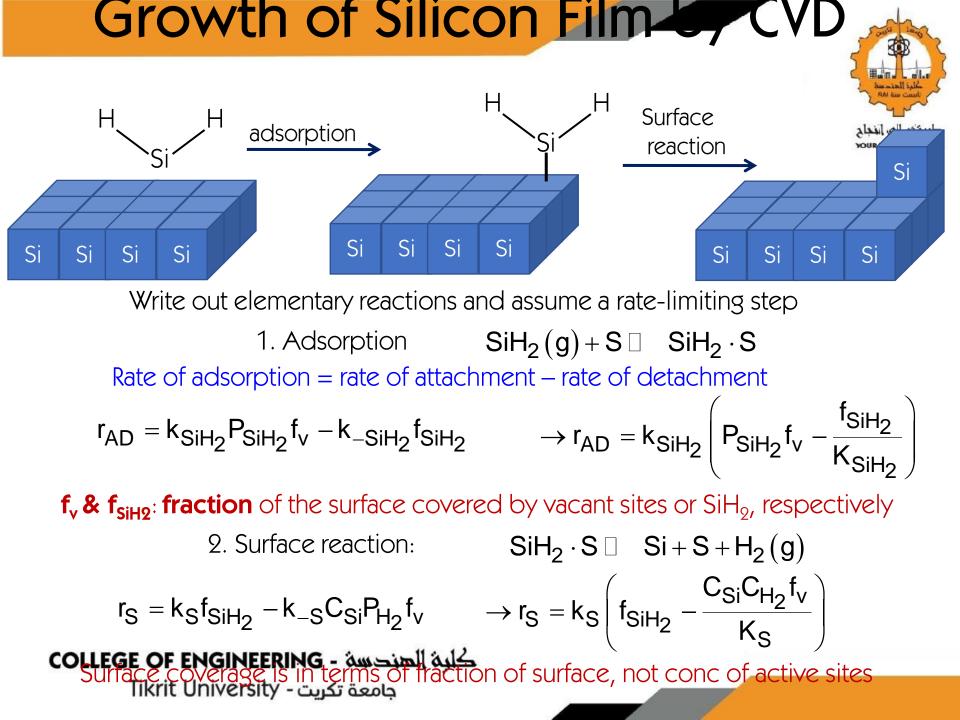
CHANNEL

287828

COLLEGE OF ENGINEERING -

تكريت - Tikrit University


64


CVD

• Chemical vapor deposition (CVD)

- Used to deposit thin films of material, such as Si, SiO_2 , & germanium (Ge)
- Mechanism of CVD is similar to those of heterogeneous catalysis \underline{except} that site concentration (C_V) is replaced w/ fraction of surface coverage (f_V)

CVD

Germanium films have applications in microelectronics & solar cell fabricatio

L ...

Gas-phase dissociation

Adsorption (1)

$$\begin{array}{c} \operatorname{GeCl}_{4(g)} \vDash \begin{array}{c} \overbrace{k}^{k} \underset{k_{-dis}}{\overset{k_{-dis}}{\overset{m}{\longrightarrow}}} & \operatorname{GeCl}_{2(g)} + \operatorname{Cl}_{2(g)} \\ \operatorname{GeCl}_{2(g)} + \operatorname{Secl}_{\overset{k_{-A}}{\overset{m}{\longrightarrow}}} & \operatorname{GeCl}_{2} \cdot \operatorname{Secl}_{2} \cdot \operatorname{Secl}_{2(g)} \end{array}$$

Adsorption (2)

$$H_{2(g)} + 2S = \bigoplus_{k=H}^{k_{H}} 2H \cdot S$$

Surface reaction

$$GeCl_2 \cdot S + 2H \cdot S \xrightarrow{k_S} Ge(s) + 2HCl(g) + 2S$$

Surface reaction is believed to be the rate-limiting step

What is the rate of Ge deposition if the surface reaction is rate limiting?

a)
$$r"_{Dep} = k_{dis}P_{GeCl4} - k_{-dis}P_{GeCl2}P_{Cl2}$$

b) $r"_{Dep} = k_AP_{GeCl2}f_V - k_Af_{GeCl2}$
c) $r"_{Dep} = k_HP_{H2}f_V^2 - k_{-H}f_H^2$
d) $r"_{Dep} = k_Sf_{GeCl2}f_H^2 - k_{-S}C_{Ge}P_{HCl}^2f_V^2$
COLLEGE OF ENGINEERING - Level 1
Fikrit University - Level 1
Representation of the set of the s

CVD

ermanium films have applications in microelectronics & solar cell fabricationGas-phase dissociation $GeCl_{4(g)} \models k_{dis} = GeCl_{2(g)} + Cl_{2(g)}$ Adsorption (1) $GeCl_{2(g)} + S \models k_{dis} = GeCl_2 \cdot S$ Adsorption (2) $H_{2(g)} + 2S \models k_{dis} = 2H \cdot S$ Surface reaction $GeCl_2 \cdot S + 2H \cdot S - k_S - Ge(s) + 2HCl(g) + 2S$ Surface reaction is believed to be the rate-limiting step:

Rate of Ge deposition (nm/s): $\mathbf{r}_{\text{Dep}}^{"} = \mathbf{k}_{\text{S}} \mathbf{f}_{\text{GeCl}_{2}} \mathbf{f}_{\text{H}}^{2}$

 k_s : surface specific reaction rate (nm/s)

 $\mathbf{f}_{\mathbf{GeCl2}}$: **fraction** of the surface covered by \mathbf{GeCl}_2

 f_{H2} : fraction on the surface occupied by H_2

* Surface of engineering - منابعة المنتخبية surface, not conc of active sites Tikrit University - جامعة تكريت

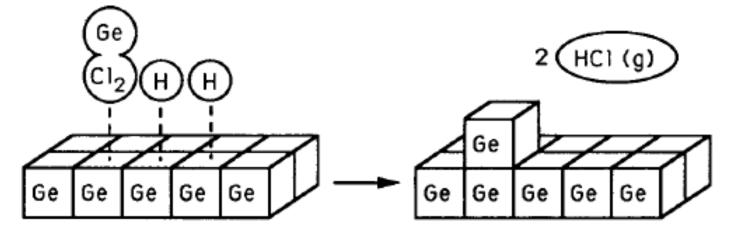
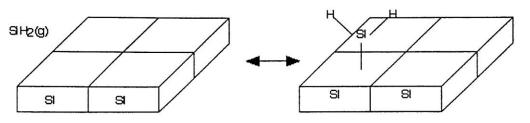
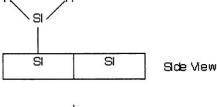
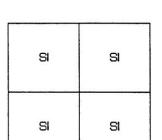




Figure 10-21 CVD surface reaction step for Germanium.

كلية الهندسة - COLLEGE OF ENGINEERING



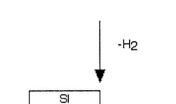
SI

SI

Side View

Top View

S


SI

جامعه تخریت - Tikrit University

COLLEGE OF E

SI

SI

SI

SI

SI

1) Mechanism Gas Phase <u>Homogeneous</u> $\operatorname{SiH}_4 \xrightarrow{} \operatorname{SiH}_2 + \operatorname{H}_2 - r_{\operatorname{SiH}_4} = k_{\operatorname{SiH}_4} \left| P_{\operatorname{SiH}_4} - \frac{P_{\operatorname{H}_2}P_{\operatorname{SiH}_2}}{K_{\operatorname{P}}} \right|$ <u>Heterogeneous</u> $\operatorname{SiH}_{2} + \tilde{S} \xrightarrow{\operatorname{SiH}_{2} \bullet \tilde{S}} \operatorname{r_{AD}} = k_{A} \left| P_{\operatorname{SiH}_{2}} f_{V} - \frac{f_{\operatorname{SiH}_{2}}}{K_{\operatorname{SiH}_{2}}} \right|$ $SiH_2 + \tilde{S} \longrightarrow \tilde{S} + H_2$ $r_{\text{Dep}} = r_{\text{S}} = k_{\text{S}} f_{\text{SiH}}$

collegef of Engliseting of المنابعة that is vacant Tikrit University - جامعة تكريت

2) Rate Limiting Step $r_{Dep} = r_S = k_S f_{SiH_2}$

3) Express f_i in terms of P_i $\frac{r_{AD}}{k_A} \approx 0$

 $\mathbf{f}_{\mathrm{SiH}_{2}} = \mathbf{K}_{\mathrm{SiH}_{2}} \mathbf{f}_{\mathrm{V}} \mathbf{P}_{\mathrm{SiH}_{2}}$

4) Area Balance $1 = f_V + f_{SiH_2} = f_V + K_{SiH_2}P_{SiH_2}f_V$

```
COLLEGE OF ENGINEERING - كلبة الهندسة
Tikrit University - جامعة تكريت
```


4) Area Balance $1 = f_V + f_{SiH_2} = f_V + K_{SiH_2}P_{SiH_2}f_V$ $f_{\rm V} = \frac{1}{1 + K_{\rm SiH_2} P_{\rm SiH_2}}$

5) Combine $r_{\text{Dep}} = \frac{k_{\text{S}} K_{\text{SiH}_2} P_{\text{SiH}_2}}{1 + K_{\text{SiH}_2} P_{\text{SiH}_2}}$

كلبة الهندسة - COLLEGE OF ENGINEERING

Homogeneous Reaction

$$\operatorname{SiH}_{4} \xrightarrow{\longrightarrow} \operatorname{SiH}_{2} + \operatorname{H}_{2} \qquad -r_{\operatorname{SiH}_{4}} = k_{\operatorname{SiH}_{4}} \left[\operatorname{P}_{\operatorname{SiH}_{4}} - \frac{\operatorname{P}_{\operatorname{H}_{2}} \operatorname{P}_{\operatorname{SiH}_{2}}}{\operatorname{K}_{\operatorname{P}}} \right]$$

$$\frac{-r_{\text{SiH}_4}}{k_{\text{SiH}_4}} \approx 0 \Longrightarrow P_{\text{SiH}_2} = \frac{K_P P_{\text{SiH}_2}}{P_{\text{H}_2}}$$

$$r_{\text{Dep}} = \frac{k_{\text{S}}K_{\text{P}}K_{\text{SiH}_{2}}P_{\text{SiH}_{4}}}{P_{\text{H}_{2}} + K_{\text{SiH}_{2}}K_{\text{P}}P_{\text{SiH}_{4}}} = \frac{k_{1}P_{\text{SiH}_{4}}}{P_{\text{H}_{2}} + K_{1}P_{\text{SiH}_{4}}}$$

كلية الهندسة - COLLEGE OF ENGINEERING

Summary

• This presentation discussed catalysts and catalysis, catalytic mechanisms, and data analysis, with a focus on CVD applications.

